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Abstract-Convective heat transfer was investigated numerically for rectangular enclosures both undivided 
and divided in two zones by a vertical partition, and having opposite isothermal walls at different 
temperatures. The aspect ratio was varied from 0. I to 16 and the Rayleigh number from 3.5 * lo3 to 3.5 * I O7 
(non-partitioned enclosures) and from I .O * 10’ to 1.6 * 10’ (partitioned enclosures). The thickness and 
conductivity of the partition were varied. The end wall thermal boundary conditions were adiabatic or 
LTP (Linear Temperature Profile). The continuity, momentum and energy equations for a 2-D laminar 
steady flow were solved under the Boussinesq approximation by using a finite-difference method and the 
SIMPLEC pressure-velocity coupling algorithm. Grid-independent results indicate that the reduction in 
the Nusselt number caused by a thin central partition can be predicted within a few per cent (in the range 
investigated) by assuming the partition to be isothermal, i.e. infinitely conducting. The finite conductivity 
of the partition causes a temperature distribution along its length, resulting in an increase in Nu which 

depends on Rayleigh number, aspect ratio and end wall thermal boundary conditions. 

1. INTRODUCTION 

HEAT TRANSFER by natural convection in rectangular 
enclosures, such as the one shown in Fig. l(a), is an 
area of considerable engineering interest. This is due 
to its many applications, such as in cavity walls, 
double-pane windows and solar collectors. Excellent 
reviews of the past experimental and numerical re- 
search work reporting on the flow patterns and heat 
transfer rates in rectangular enclosures are available 
and will not be discussed here [l-3]. 

Real thermal systems can deviate significantly from 
the simple rectangular cavity model of Fig. l(a). For 
example, in building applications the model should 
include the association of two cavities communicating 
laterally through a doorway, window, corridor or over 
an incomplete dividing partition [4]. Natural con- 
vection in the air layer of a double-pane window is 
coupled with the internal natural convection in the 
room and external convection and could deviate from 
models such as the one shown in Fig. l(a). Further, 
data obtained from the basic cavity model are not 
strictly applicable to the solar collector cavity where 
the internal convection is coupled with external con- 
vection at the glazing [5]. These and the possible insu- 
lating effect of partitions are some of the reasons 
which recently encouraged researchers to turn their 
attention to the study of convection in complex 
enclosures and, in particular, to enclosures with par- 
tial and complete partitions at the end walls. 

The effect of partial partitions normal to the end 
walls on fluid flow and heat transfer in enclosures was 
investigated in refs. [6-141. In the case of a completely 
partitioned enclosure the convection in the two result- 
ing cavities is coupled, Fig. l(b). Reports on this 
geometry are scarce and are only in general qualitative 
agreement, with disagreement in the actual numerical 
values which calls for further clarification, Anderson 
and Bejan [15] reported that N equidistant thin alu- 
minium partitions in a water-filled enclosure having 
AR = l/3 at Ra = log-10” reduced the overall heat 
transfer rate by a factor (N+ 1))“.6’ (i.e. by a factor 
0.65 for N = 1). Nishimura et al. [ 161 performed both 
an experimental and a numerical investigation. In 
their experiments the partitions were made of thin 
copper plates, the working fluid was water, the enclos- 
ure aspect ratio was 4 and 10 and the Rayleigh number 
ranged from lo6 to 109; they found a heat trans- 
fer reduction factor of 0.42 for a single partition. 
From their numerical simulations (AR = 4, Pr = 6, 

lo4 < Ra < 10’) the authors reported a reduction by 
a factor (N+ 1) ’ (i.e. a factor 0.5 for N = 1). 

2. MATHEMATICAL FORMULATION AND 
NUMERICAL METHODS 

Figure 1 is a schematic of the basic, or non-par- 
titioned, enclosure (identified with the subscript ‘b’) 
and of the partitioned enclosure (identified with the 
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NOMENCLATURE 

AR aspect ratio of the enclosure, H/W 
h thickness of the partition 

9 acceleration due to gravity 
H height of the enclosure 
k thermal conductivity of the fluid 

4 thermal conductivity of the partition 
(along _v) 

N,., IV, number of grid points along .X and y 
Nu,. local Nusselt number, y W/[(th - f,)k] 
NC1 average Nusselt number, 

~l~H~~~~,~~~~d~* 

P pressure 
P dimensionless pressure, pW2/(pvr) 

Pr Prandtl number, v/a 

Y local heal flux 
r dimensionless longitudinal thermal 

resistance of partition, see equation (8) 
RU Rayleigh number, 9fl(t,, - t,) W’/(VX) 
I temperature 
T dimensionless temperature, 

(t-t,)j(th-fJ 

fh temperature of the hot wall 

t, temperature of the cold wall 
U velocity along x (perpendicular to 

isothermal walls) 
L’ velocity along ,V (parallel to isothermal 

walls) 
U, V dimensionless velocities, U = u W/z and 

v = VW/a 

.Y, 1 coordinates perpendicular and parallel to 
isothermal walls 

.I’, Y dimensionless coordinates, S = .Y:’ W and 
r=v/w 

W width of the enclosure. 

Greek symbois 
3! thermal diffusivity of the fluid 

fi thermal expansion coefficient of the Ruid 
As, A_r mesh sizes along .Y and J 
\’ kinematic viscosity of the fluid 

/’ density of the fluid. 

Subscripts 
ad indicates adiabatic conditions at the end 

walls 
b refers to the non-partitioned cavity 
C refers to the cold wall 
h refers to the hot wall 
LTP indicates Linear Temperature Profile 

conditions at the end walls 
max maximum 
man monitorjng point 

p refers to the partitioned cavity. 

Superscripts 
calculated for r + 0 (‘ideal’ partition) 
calculated for r -+ cc. 

subscript ‘p’). The enclosure has height H and width Continuity 
W. The dividing wall has a fixed thickness h. Fol- SC d V ^ . 
lowing the Boussinesq approximation and the 
assumption of 2-D steady-state conditions the non- 
dimensional governing equations conform to the fol- 
lowing form : 

Y 

0 
L X 

(4 (bl 

Solid 
partitian 

- 

b 

FE. 1. Schematic of the basic (a) and partitioned (b) enclosure. 
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Momentum 

&JJg+vg]= -Fy+$+$+RaT 

Energy 

(3) 

a?- i?T d2T a2T 
uz+Vjy=aX’+p (4) 

and are coupled with the conduction equation in the 
solid partition. The non-dimensional variables X, Y, 
U, V, P and Tare defined in the Nomenclature. 

The flow boundary conditions are 

U = V = 0 on solid boundaries. (5) 

The thermal boundary conditions at the isothermal 
walls are 

T = 1 at X= -l/2 (hot wall) (6a) 

T=O at X- l/2 (cold wall). (6b) 

The thermal boundary conditions at the end walls 
can have a significant effect on local and mean heat 
transfer rates across the enclosure, especially at low 
aspect ratios [2, 12, 171. Numerical investigations 
usually include adiabatic and LTP (Linear Tempera- 
ture Profile) conditions, defined, respectively, by 

BT 
E=o 

T-4-X 

(7) 

(8) 

with the former giving systematically higher heat 
transfer rates. In a recent comparison with exper- 
imental data (181 the present authors verified that heat 
transfer rates obtained experimentally and expected 
in real engineering systems (both for non-partitioned 
and partially partitioned cavities) should lie between 
these two boundary conditions and should be closer to 
the LTP. In this study both conditions are considered. 

In the present investigation Ra was varied between 
3.5 * IO3 and 3.5 * IO’ for the basic enclosures, and 
from 1 .O * lo5 to 1.6 * 10’ for the partitioned enclosures, 
The aspect ratio AR was varied between 0. I and 16. 
Equations (l)-(4) were solved using the computer 
code Ha~ell-FLOW3~ HP], which is based on a 
finite-difference, colocated-grid method. The STM- 
PLEC algorithm for pressure-velocity coupling was 
chosen 1201. 

In order to assess the effect of a partition on heat 
transfer rates from numerical simulations, it is crucial 
to obtain, for both the basic and the partitioned 
enclosure, fully converged and grid-independent 
results, based, as far as possible, on the same numeri- 
cal methods. Thus, a preliminary analysis was con- 
ducted on the convergence behaviour of the solution 
with both the number of SIMPLEC iterations and the 
number and distributions of grid points. Examples of 

the results are shown below ; they are all based on the 
central differencing scheme for the advective terms. 
Moderate underrelaxation factors (0.2-0.3) were used 
for the velocities and the temperatures so that the 
mass source residual (amount by which the continuity 
equation is not satisfied by the current solution) exhi- 
bited a smooth decreasing trend and eventually sta- 
bilized itself around IO- 3-10-4 times the overall mass 
flow associated with the main circulation cell. 

Figure 2 illustrates the convergence behaviour of 
the solution with increasing iterations for a basic and 
a partitioned enclosure having AR = 1, Ra = lo6 and 
LTP end walls. The vertical velocity ornon at a moni- 
toring location (around X = Y = -l/4) is reported 
as a function of the number of iterations as computed 
using two different grids having 30 * 30 and 60 * 60 
nodes in the fluid, respectively, and selectively refined 
near solid walls. Convergence is slower for the finer 
grids and for the basic enclosure : there are still slight 
changes in the monitored quantity after 1500 iter- 
ations. 

Figures 3(a) and (b) illustrate the grid dependence 
of the solution for basic and partitioned enclosures 
having AR = 1 and 10, Ra = IO6 and LTP end walls. 
The maximum of the horizontal velocity, u,,, (a) and 
the average Nusselt number (b) are reported against 
the number N, of grid points along the vertical direc- 
tion. The number of grid points in the horizontal 
direction is kept equal to N, (AR = 1) or NJ3 
(AR = 10). The solution becomes grid independent at 
NY > 40 for AR = 1 and at N, > 90 for AR = 10. The 
average Nusselt number appears to be less sensitive 
than the velocity peak and, more generally, than the 
flow field. 

On the basis of the above and similar results, the 
following computational grids were chosen for the 
final simulations for different values of the aspect 
ratio. 

AR 0.1 0.2 0.5 1 2 3 5 10 16 

N, 90 80 70 60 50 56 40 50 30 
N, 30 40 50 60 70 74 80 90 120 

--~ -~ 

The grids were selectively refined near solid walls fol- 
lowing a linear stretching law with AxmiJAxmax = 

Ay,inlAymax = 0.2. Additional control volumes were 
used in the central partition if required. 

The central differencing scheme (CDS) was used 
whenever possible for the advective terms in order to 
minimize numerical diffusion errors. For non-par- 
titioned enclosures, up to Ra = 3.5 + lo”, results 
obtained by using CDS and hybrid-upwind diff- 
erencing (HDS) differed negligibly both in Nu and in 
the peak velocities. For AR > 2 and Ra > lo6 the 
CDS solution exhibited spurious oscillations and con- 
vergence was achieved only by using very small under- 
relaxation factors on fJ, V and T, while the difference 
in Nu between CDS and HDS results increased to 
about 1% (in the worst case, i.e. AR = 10, LTP end 
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FIG. 2. Vertical velocity at a monitoring point as a function of the number of SIMPLEC iterations for 
Ra = 10". AR = I, LTP end walls, basic or partitioned enclosure and two different grids. 

walls). All results presented here for the basic enclos- 
ure are based on HDS at the highest Rayleigh num- 

bers (10’ and above) and on CDS otherwise. For 
the parametrical comparison study on the partitioned 
enclosure, HDS was mostly used. Computation times 
ranged from about 10 to about 30 min on an IBM 

3090-2005, depending on Rayleigh number, aspect 
ratio, boundary conditions and partitioned/non-par- 
titioned enclosure. 

It should be observed that, for the basic enclosure, 
at high aspect ratios multicellular flow was predicted 
by using CDS, in agreement with experimental results 
and published high accuracy predictive studies [21, 
221, but not by using HDS. Nevertheless, the cor- 
responding average Nusselt number varied very little 
between the two cases, making the use of hybrid diff- 
erencing quite acceptable for heat transfer predictions. 
The reason for this lies in that the details of the flow 
in the core region of the cavity have little influence on 
the near wall region, where most of the temperature 
variations occur. Incidentally, this is also the rationale 
for the use of two-dimensional, steady-state. laminar 
solutions even in cases where unsteadiness and three- 
dimensionality are known to occur in real enclosures. 

3. PRELIMINARY ANALYSIS 

3.1. Results fkv the basic enclosure 
In the basic enclosure the Nusselt number is 

expected to be a function of the aspect ratio and the 
Rayleigh number, i.e. 

Nub = ,f’(AR, Ra). (9) 

At sufficiently high aspect ratio and Rayleigh number. 
it can be expressed with reasonable accuracy in the 
following way : 

Nu, = CAR” RN’)’ (IO) 

where C, n and m are constants which can be deter- 
mined from the correlation of experimental or numeri- 
cal results. 

Figures 4(a) and (b) show the average Nusselt num- 
ber vs the Rayleigh number for adiabatic and LTP 
end walls and for AR = 0.2-10. An alternative way of 
presenting the results is to plot the average Nusselt 
number as a function of the aspect ratio for different 
values of Ru. This is shown in Fig. 5 for adiabatic (a) 
and LTP (b) end walls, respectively. 

Comparison of numerical predictions with litera- 
ture results, from both numerical and experimental 
work. is very good (see ref. [13]). Correlation 
tions for the present results are 

[ Nu = 0.155 Ru”‘” 

AR=1 

i 

(adiabatic end walls) 

Nu = 0.120 Ra” “I 

and 

1 (LTP end walls) 

r Nu = 0.247AR ” “I Ra”-‘” 

AR = 2-10 
(adiabatic end walls) 

Nu = 0.199 AR K” Ra” ” 

(LTP end walls). 

The above correlations fit the results within 

equa- 

(Ila) 

(tlb) 

(12a) 

(t2b) 

+ 5 %I 

of the range Ra = 3.5 * IO’-3.5 * IO’. One immediate 
observation from equations (12) is that 

Nu,,,,,lNu,,,> N 1.24 AR -x0’ (13) 

which shows that the difference between the lwo 
values of Nu decreases with increasing AR, see also 
ref. [IS], and is independent of Ra. If AR = 1, Nu is 
24% higher for adiabatic than for LTP end walls. 

As is obvious from Figs. 4 and 5. no simple powcr- 
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FIG. 3. Dependence of the results on the number of grid points along the vertical direction NV, for Ra = 106, 
AR = I or 10 and basic or partitioned enclosures, (a) peak of horizontal velocity, (bj average Nusselt 

number. 

law correlation is applicable to the results for very low 
aspect ratios (AR < 1) or Rayleigh numbers. It is 
convenient for the discussion that follows to represent 
Nu in graphical form by drawing theconstant-& lines 
in the plane of the two independent parameters AR, 
Ra (both in log scales). The result is shown in Fig. 6 
for adiabatic (a) and LTP (b) end walls, respectively. 
These graphs were drawn by interpolating predictive 
results relative to several hundred test cases. 

3.2. The expected effect of a partition OII heat transfer 
3.2.1. ‘Ideai’partition. If an ideal, infinitely thin and 

perfectly conducting partition, isothermal at T = l/2, 
centrally divides the enclosure then 

M4;/lvu, = 2-(4m-n), (16) 

In particular, it follows from equations (12) that under 
these assumptions 

ARP = 2*AR 

Ra, = Ra,tI6 

Wa) jQ&,/Nu, = 2- 1.24 = 0.423 (adiabatic end walls) 

(14b) (17a) 

for each of the two separate cavities thus obtained. 
Hence 

Nu, = f(2 * AR, Ra/16). (15) 

This ‘ideal’ value, which is also the overall Nusselt 
number for the partitioned enclosure, will be indicated 
as Nu’, in the following. If equation (10) can be used 
with constant n, m throughout the range AR-2 *AR, 
Ral16-Ra then 
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Nu;/Nu, = 2 ‘.” = 0.444 (LTP end walls). (I 7h) 

For very high aspect ratios, the dependence of Nu on 
AR becomes negligible (i.e. n -+ 0) and the reduction 
factor caused by the partition on Nu approaches 0.5. 

More generally, the charts of Fig. 6 can be used. In 
order to find the effect of an ‘ideal’ partition on Nu 
one simply has to draw a segment corresponding (on 
log paper) to a 2-fold increase in AR and to a I6-fold 
decrease in Ra. 

Point A in Fig. 6(b) is representative of the con- 
ditions investigated by Nishimura et al. [16], i.e. 
AR = 5, Ra = 10’. The Nusselt number is about 11 
for the basic enclosure. The construction described 

above leads to point A’ as representative of the cor- 
responding ‘ideal’ partitioned enclosure ; the associ- 
ated Nusselt number is about 5, with a reduction 
factor of 0.44 in good agreement with the exper- 
imental result of ref. [16] (0.42). The same result can 
be obtained by using equation (17b). 

On the other hand, point B in the same graph cor- 
responds to AR = l/3, Ro = 3.5 * 10’ and is roughly 
representative of the experimental conditions inves- 
tigated by Anderson and Bejan [ 151 (the authors per- 
formed their measurements for Ra = IO’-IO”. which 
unfortunately is outside the range investigated here; 
however, the isopleths of Nu appear to be roughly 
parallel in the region around point B so that results 
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FIG. 5. Basic enclosure: average Nusselt number as a function of AR for Ra = 3.5* lo’-3.5* 10’ and 
adiabatic or LTP end walls. 

can be extrapolated with little error). Proceeding as 
before, one finds a reduction in NU from - 16 (point 
B) to -9 (point B’), i.e. a reduction factor of about 
0.56 in acceptable agreement with the experimental 
result of 0.65. 

It should be observed that both the above exper- 
iments were performed in water (Pr = 54) while the 
present simulations are for air (Pr = 0.72) ; however, 
it is known that the Prandtl number has only a mar- 
ginal influence on Nu [2]. LTP rather than adiabatic 
conditions at the end walls were used, as they are 
more appropriate to simulate the conditions of real 
laboratory experiments. Of course, due to the differ- 
ences in Ra, Pr, thermal boundary conditions, etc. 
exact quantitative agreement with the results of refs. 
[ 15, 161 cannot be expected ; nevertheless, the above 
discussion shows that the main differences in exper- 
imental results, concerning the effectiveness of par- 

titions in reducing heat transfer rates in enclosures, 
can be explained even on the basis of the ‘ideal’ par- 
tition model. In particular, it should be observed that 
the reduction factor in Nu caused by a central parti- 
tion may be much larger than 0.5 (i.e. the effective- 
ness of the partition may be very little) at very small 
aspect ratios (left region of the graphs in Fig. 6). 

A similar technique may be used to assess the effect 

of multiple partitions ; for example, two equidistant 
‘ideal’ partitions cause a 3-fold increase in AR and a 
reduction in Ra by (l/3)“ = l/81. This results in a 
reduction factor of 3 - ’ ’ 7 = 0.276 for LTP boundary 
conditions. This compares very well with the exper- 
imental results of Nishimura et al. [ 161 (Fig. 3). 

3.2.2. Realpartition. In the case of a real partition, 
having a finite thickness b and conductivity k,, a 

departure from the ‘ideal’ behaviour occurs due to 
three distinct effects. 
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(I) Geometrical effect-the partition reduces the 
width of each of the resulting separate cavities from 
IV]2 to (W--b)/Z, thus modif~ng the geometry of 
the problem. The ‘partial’ Rayleigh number of each 
separate cavity decreases, while the ‘partial’ aspect 
ratio increases, with respect to the ‘ideal’ case. 

A simple, though cumbersome, analysis shows that, 
provided equation (10) holds and b c W, the overall 
Nusselt number changes by a factor NuJNu’, = If 
(I -3m+n)b/W with respect to the ‘ideal’ case. For 
example, for LTP end walls and AR > 1 (‘partial’ 
aspect ratio > 2), equation (12b) is applicable 
yielding NuJNufp = 1 +O.O9b/W. Thus, the varia- 
tion of NM, relative to Nub caused by the finite thick- 
ness of the partition is positive and is less than 1% 
provided b/W < l/10. 

Only for ‘partial’ aspect ratios less than 1 (i.e. for 
AR < 0.5) the Nusselt number may increase markedly 
with the ‘partial’ aspect ratio, i.e. n z 1, which results 
in a relative variation of the overall Nusselt number 
Nu, positive and of the same order of b/ W. 

(2) Thermal resistance effect-the partition adds 
its conductive thermal resistance along X, b/k,, to the 
convective resistance of the fluid layers along the same 
direction, W/(k Nu;), thus reducing the overall NUS- 

selt number. A detailed analysis similar to that above 
shows that, provided N$(b/ W)(k/k,) c 1, the associ- 
ated factor N~~/~~~ is 1 - (I+ ~)~#~(bl ~(k~k~). 
Thus, this effect is always negligible for thin partitions 
(b CC IV) in air-filled enclosures (k, >> k). The vari- 
ation of Nu, is, of course, negative, i.e. opposite to 
that of the geometry change. 

13) Thermal coupling effect-the finite con- 
ductivity of the partition causes a complex tem- 
perature profile to be established along it, thus mod- 
ifying the thermal boundary conditions of the two 
separate enclosures with respect to the ‘ideal’, iso- 
thermal-wall case. This effect becomes more impor- 
tant as the thickness of the central partitions decreases 
and the other two effects become negligible, therefore 
it is expected to be the most significant in air-filled 
enclosures with relatively thin partitions. The extent of 
the Nusselt number variation depends on the thermal 
conductance of the partition along the vertical direc- 
tion, i.e. on the product b * k,, rather than on these 
two parameters separately. 

In order to single out the thermal coupling effect, 
several test cases were run by assuming a small par- 
tition thickness (b/W = l/40), resolving the partition 
by four grid points, and setting its thermal conduc- 
tivity along x to a very high (practically infinite) value. 
This assured effects (I) and (2) to be negligible, thus 
allowing the study of the major effect (3) without the 
disturbing influence of the other two. The con- 
ductivity k, along y, and thus the partition’s thermal 
resistance l/(bk,), were varied in a broad range 
between practically infinitely conducting (isothermaf 
partition) and practically non-conducting (partition’s 
vertical temperature profile completely imposed by 
the fluid). The capability of the Harwell-FLOW3D 

code to deal with anisotropic conduction in solids [ 191 
was exploited to this purpose. Several aspect ratios 
and Rayleigh numbers, and adiabatic~LTP end walls, 
were tested. Results are summarized and discussed in 
the next section. 

4. RESULTS AND DISCUSSION 

Figure 7 compares predicted vertical profiles of Nu, 
along the hot and cold walls, and partition tem- 
perature profiles, for the extreme cases k, -+ co and 
k, + 0 and for adiabatic or LTP end walls, in 
a partitioned cavity having AR = 5 and Ra = 10’. 
The corresponding average Nusselt numbers are also 
reported. The results shown are easily interpreted on 
the basis of the following considerations. 

In an enclosure having a central partition, hot fluid 
from the hot wall impinges on the upper half of the 
partition while cold fluid from the cold wall impinges 
on the bottom half, Thus, the partition tends to be 
hotter at the top than at the bottom. When its longi- 
tudinal thermal resistance is small enough, heat will 
flow from the top to the bottom of the partition and 
an almost isothermal temperature profile will be estab- 
lished along it. On the other hand, when the longi- 
tudinal thermal resistance of the partition is large, 
compared with the effective thermal resistance of the 
fluid layers, a non~unifo~ temperature profile will be 
maintained along the partition. This results in 
increased heat transfer rates, as the temperature 
difference between hot wall and partition increases in 
the bottom half of the cavity, where the local hot-wall 
Nusselt number is large, and decreases in the top half, 
where it is small (the opposite occurs between the 
partition and cold wall). Also, the effect will be larger 
for a cavity having adiabatic rather than LTP end 
walls, as in the latter case the boundary conditions 
force the (dimensionless) temperature of the partition 
to be Ij2 both at the top and at the bottom ends, thus 
greatly limiting the tem~rature excursion along it. 

The function describing the increase in Nu,, as k, 
decreases from infinity to zero, should possess a ‘uni- 
versal’ nature, provided that the appropriate parameter 
is used as the independent variable. By carefully 
analysing the present results, it was concluded that 
the most appropriate parameter is the ratio of the 
thermal resistance per unit length of the partition 
along y, I/(bk,), to the equivalent thermal resistance 
per unit length of the fluid layers along x in the basic 
enclosure, l/(Hk Nu,,) 

Figure 8 shows the average Nusselt number in the 
partitioned enclosure, normalized to its ‘ideal’ value 
Nub (15), as a function of r for different combinations 
of aspect ratios and Rayleigh numbers. Adiabatic end 
walls are assumed; similar curves, but with lower 
departures from the ‘ideal’ behaviour, are obtained 
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FK;. 7. Effect of the finite longitudinal thermal resistance of the partition on profiles of ivu,. and of the 
partition temperature for adiabatic and LTP end wails (AR = 5, Ra = IO’). 

for LTP end walls. In all cases. Nu, is practically 
coincident with Nub for r < 10-l and reaches a 
maximum NLI; for I > IO’. It is evident that (Nu!,- 
~~~)~~~~~-~~i~) is a fairly universal function of r 
only. Its bchaviour is (rather crudely) described by 

It should be observed that the value of r depends not 
only on the relative thickness (h,/ W) and conductivity 
f&/k) of the partition. but also on AR and Mu, (hence 
on Ru). 

For example, for a double-glazed window having 
H = 60 cm. W = 6 cm, th- t, = 20°C one has 
AR = 10, Ru= 4~10’ and, from equations (12). 
NUT = 4.2-4.5. A central glass partition 0.2 cm thick 
(k,lk = 30, hi!&’ = l/30) has an r-value of ,-- 35. This 
is far from the ‘ideal’ cast f --f 0 (perfectly conducting, 
or isothermal. partition), being rather closer to the 
case I’ --t w, see Fig. 8. In fact, from equation (19) one 
has 

(Nu, - Nu;)/(Nu; - (vu;) = 0.96. 

The maximum relative increase in Nu,. ANu = 
(Nu; - ~~~~jlN~~ (corresponding to a partition 
having infinite thermal resistance along ,v. i.e. to a 
thin foil) is shown in Fig. 9 as a function of RN 

for AR = S and adiabatic or LTP end walls. In the 
former case, ANu increases monotonically with Rri. 

For LTP end walls, ANza has a flat maximum about 
Rn = IO’ and is always much lower (2-5 times) than 
for adiabatic end walls. 

The dependence of ANu on Ha and AR was invcs- 
tigated in more detail for the adiabatic case only. 
Figure 10 shows ANu as a function of AR for 
Rn = 1.6 * lo’--1.6* 10’. At low Rayleigh numbers, 
A.& increases monatonically with ii R up to AR = 10 : 
at higher Ra, a maximum appears which is located 
around AR = 2-3 and becomes more pronounced 
with increasing Ra. 

In the range investigated, ANu never exceeds - IF% 
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FIG. 8. Average Nusselt number as a function of the parameter I for different aspect ratios and Rayleigh 
numbers (adiabatic end walls). Values are normalized to those for r + 0. 

(adiabatic end walls) or -3% (LTP end walls). For 
the double-glazed window example considerd above, 
it follows from Fig. 10 that, even in the case of adia- 
batic end walls, ANu g 3%. Thus, the ‘ideal’ value 
Nub, obtained by using the charts in Fig. 6 or, when 
possible, correlations (12) or similar, can be used as 
a fair approximation for Nu, in practical engineering 
calculations, especially those concerning air-filled 
enclosures. 

In the experiments of Nishimura et al. [16] the 
ratio r is approximately 7.5 which for LTP boundary 
conditions gives only a marginal (< 1%) deviation 
from the ideal case. 

5. CONCLUSIONS 

The effect of a central partition on heat transfer 
rates in a rectangular vertical enclosure of height H 
and width W, having opposite isothermal walls at 
temperatures t,,, t, was investigated numerically. 

If the partition can be assumed to be ‘ideal’, i.e. 
infinitely thin and isothermal at (t,,+ t,)/2, the result- 
ing reduction in heat transfer rates from Nub to Nu, 
can be simply computed from accurate results 
NU = f(AR, Ra) relative to vertical rectangular 
enclosures ; such results, based on highly accurate and 
grid-independent numerical simulations, were pre- 
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FIG. 9. Maximum relative increase in Nu, due to the finite thermal resistance of the central partition as a 
function of Ra for AR = 5 and adiabatic or LTP end walls. 
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FIG. 10. Maximum relative increase in Nu, due to the finite thermal resistance of the central partition as 
a function of AR for various Ra (adiabatic end wails only). 

sented in graphical form for AR = 0.1-16 and 

Ra = 3.5 * l&3.5 * 107, and in correlation form for 
AR > 1 and the same range of Ru. 

For a real partition, having finite thickness b and 
conductivity k,, a departure from this ‘ideal’ behav- 
iour occurs. If the cavity is air-filled and the partition 
is relatively thin, the main reason for this departure is 
the thermal coupling of the two separate enclosures 
across the partition. This effect was isolated and 
numerically investigated for a wide range of AR, Ru 

and partition conductivities. A dimensionless par- 
ameter r, expressing the ratio of the thermal resistance 
of the partition along y to the effective resistance of 
the fluid layers along x, was introduced and was found 
to characterize well the amount of departure from the 
‘ideaf’ {perfectly isothermal partition) behaviour. For 
any given AR and Ra, for r < IO-’ Nu, is dose to its 
‘ideal’ value Nu;, while for r > 10” it approaches a 
maximum Nup. The relative increase in Nu, was found 
to depend on AR and Ra and, much more sensitively, 
on the end wall boundary conditions, being far larger 
for adiabatic than for LTP ones. In the range inves- 
tigated, it never exceeded the value of - 12% (adia- 
batic) or -3% (LTP). Thus, the use of the ‘ideal’ 
value of Nu, is quite acceptable in practical engin- 
eering applications concerning air-filled enclosures. 
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SUR LA CONVECTION NATURELLE DANS UNE CAVITE RECTANGULAIRE A UNE 
OU DEUX ZONES 

R&u&--Le transfert thermique convectif est et&it numeriquement pour des cavites rectangulaires sans 
partition ou divisies en deux zones par une cloison verticale et ayant des parois opposees isothermes a 
differentes temperatures. Le rapport de forme varie de 0,l a 16 et le nombre de Rayleigb de 3,5 x lo3 a 
3,5 x 10’ (sans partition) et de I,0 x lo5 a I,6 x IO* (avec partition). On fait varier l’tpaisseur et la 
conductivite de la cloison. Les conditions aux limites thermiques aux parois terminales sont adiabatiques 
ou PTL (profil de t~p~rature lit&ire). Les equations de continuite, de moments et d’energie pour un 
~oulement 2-D laminaire permanent sont resofues dans ~appro~mation de Boussinesq en utilisant tme 
methode de differences &ties et un algorithme de coupiage pression-vitesse. Des r&hats independants de 
la grille indiquent que la r4xluction du nombre de Nusselt causee par une cloison centrale mince peut etre 
predite a un faible pourcentage (dans le domaine Btudie) en supposant la partition isotherme, c’est-a- 
dire infiniment conductrice. La conductivid fmie de la cloison cause une distribution longitudinale de 
temperature aver un accroissement de Nu qui depend du nombre de Rayleigh, du rapport de forme et des 

conditions aux limites thermiques sur les parois terminales. 

NATURLICHE KONVEKTION IN EINEM IN EINE ODER ZWEI ZONEN 
UNTERTEILTEN HOHLRAUM 

Zusammenfaswng-Es wird der konvektive W~~e~~rgang in einem rechteckigen Hohlraum numerisch 
untersu~ht, der entweder durch eine vertikale Wand in zwei Zonen unterteilt ist oder such nicht. Der 
Hohi~~ besitzt zwei gegen~~rIiegende isotherme WBnde unterschi~licher Temperatu. Das Sei- 
tenverhlltnis wird zwischen 0.1 und 16 variiert, die Rayleigh-Zahl von 3.5 x IO3 bis 3.5 x 10’ (im nicht- 
unterteilten Hohlraum) bzw. von I,0 x IO” bis I,6 x 10” (im unterteilten Hohlraum). Die Dicke und Wlr- 
meleitflihigkeit der unterteilenden Wand wird ebenfalls variiert. Die Endwand ist entweder adiabat, oder 
ihr wird ein lineares Temperaturprofil aufgepragt. Die Gleichungen fur Kontinuitat, Impulstransport und 
Energie werden Fur eine zweidimensionale laminare station&e Striimung gel&t. und zwar unter den 
An&men der Boussinesq-Approximation. Hierzu wird ein Finite-Differenzen-Verfahren und der 
SIMPLEC-Algorithmus filr die Kopplung von Druck und Geschwindigkeit verwendet. Die gitter- 
unabhlngigen Ergebnisse zeigen. da13 die Verringerung der Nusselt-Zahl durch eine diinne Unterteilung 
in der Mitte innerhalb einiger weniger Prozent vorhergesagt werden kann (fiir den untersuchten Bereich), 
wenn die Unterteilung als isotherm, d. h. unendlich gut leitend betrachtet wird. Fur den Fall einer endlichen 
Leitfihigkeit ergibt sich eine Temperaturverteilung an der Trennwand, wodurch die Nusselt-Zahl zunimmt. 
Diese hangt von der Rayleigh-Zahl, vom Seitenverhiiltnis und von der thermischen Randbedingung an der 

Endwand ab. 

ECTECTBEHHAII KOHBEKHHsI 3 OfiHO- ki ABYXBOHHOR IIOlIOCl’ki 
l-IPIIMOYFOJIbHOI”O CEYEHMB 

!iWiOTWUI--%CJieHHO iiC42IeAOBWICli EOHBeUTHBHfd TeMOIIePeHOC B IIpShfO~OAbHbIx EOJIOCTSIX XiSX 

Hepa3Aene~x,TaKa~eA~arxHa~so~ar ~P~arrbHoaue~ro~~o~HHMe~~ pa3AmHbre 

Te~nepa~yparnpollrao~oAo~x~30Tep~~~eC~~~~e~ox.C)Tffo~e~~e:o~~Bap~BanOCbo~ 0,l 
no 16, a ~lawlo hAen OT 3,s x IO3 AO 3,s x IO’ (ann nepa3~eJtenHbtx nonocreii) H OT 1.0 x lo5 no 
1,6 x 10s (anr pa3nerremibtx nonocreti). Tonnmxa II rennonpoeonrlocru neperopoagn uahiemmsicb. 
Tenncmare rpamwme ymOBm Ha TopAeBbIx CTeHRaX 6b1~tu aLUaa6arnqecrcu~ mm CoOTmBOm 
nmietiohfy mtnepaTypHoh4y npo@uno. C sicnoAb30namiehi XoHewto-pa3iiocrHoro hmom H am'o- 

pHTMa SIh@LEC, cBSI3bIBmmerO ABaJWNe CO CKOpOCTbEO, peI.KaJIHCb YpaBHetrWI HepslpmHOnH, a 

Tame coxpaHemK ~onmecrisa mmKemin B 3iieprm Ann Aeyhfepzioro nahsi~apiioro m~oxap~oro 

Te9e~B~~~e~~~~~Pe3ynbTa~,He3asric~eoTB~(iopa~~,nOKa3blerntT,rro 

yMeItb~e~e~~aHyccenbTa,BanaiumoeTO~O~ueu~bHoiineperopoaaoiiMo~~ 6brrbortpene- 
JIeHO C TO~iiOCTbKJ A0 HeCXOJlbKHx IIpOAeHTOB(B EfCCJIeAyeMOM ASiatR23OHe)B ~~A~OAO~e~ rUOTep 

MHYHOcTSl YIepe%.opOAXH, T.e. = 6ecKOHePHOfi TeIlllOIIpOBOAiiOCTSi. KOHVlHaS %llAOIQ‘,BOAHWb 

nepe2ropoAXff o6ycAoanHeaeTpacnpeA~eHHeTeMnepa~noeean~ee,npeaoaa~~KyBeJl~e~HKt 38ia- 

WHHR Nu, KOTOpOe 3aBHCHT OT ¶HCJIa hIeJi,OTHOtUeHHK CTOpOH &i TemOBMX rpa~lnHarx YaoBti Ha 

TOprteBbcv cretmax. 


