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Abstract—Convective heat transfer was investigated numerically for rectangular enclosures both undivided
and divided in two zones by a vertical partition, and having opposite isothermal walls at different
temperatures. The aspect ratio was varied from 0.1 to 16 and the Rayleigh number from 3.5 » 10° to 3.5 * 107
(non-partitioned enclosures) and from 1.0 # 10> to 1.6 » 10* (partitioned enclosures). The thickness and
conductivity of the partition were varied. The end wall thermal boundary conditions were adiabatic or
LTP (Linear Temperature Profile). The continuity, momentum and energy equations for a 2-D laminar
steady flow were solved under the Boussinesq approximation by using a finite-difference method and the
SIMPLEC pressure—velocity coupling algorithm. Grid-independent results indicate that the reduction in
the Nusselt number caused by a thin central partition can be predicted within a few per cent (in the range
investigated) by assuming the partition to be isothermal, i.e. infinitely conducting. The finite conductivity
of the partition causes a temperature distribution along its length, resulting in an increase in Nu which
depends on Rayleigh number, aspect ratio and end wall thermal boundary conditions.

1. INTRODUCTION

HEAT TRANSFER by natural convection in rectangular
enclosures, such as the one shown in Fig. 1(a), is an
arca of considerable engineering interest. This is due
to its many applications, such as in cavity walls,
double-pane windows and solar collectors. Excellent
reviews of the past experimental and numerical re-
search work reporting on the flow patterns and heat
transfer rates in rectangular enclosures are available
and will not be discussed here [1-3].

Real thermal systems can deviate significantly from
the simple rectangular cavity model of Fig. 1(a). For
example, in building applications the model should
include the association of two cavities communicating
laterally through a doorway, window, corridor or over
an incomplete dividing partition [4]. Natural con-
vection in the air layer of a double-pane window is
coupled with the internal natural convection in the
room and external convection and could deviate from
models such as the one shown in Fig. 1(a). Further,
data obtained from the basic cavity model are not
strictly applicable to the solar collector cavity where
the internal convection is coupled with external con-
vection at the glazing [5]. These and the possible insu-
lating effect of partitions are some of the reasons
which recently encouraged researchers to turn their
attention to the study of convection in complex
enclosures and, in particular, to enclosures with par-
tial and complete partitions at the end walls.

The effect of partial partitions normal to the end
walls on fluid flow and heat transfer in enclosures was
investigated in refs. [6—14]. In the case of a completely
partitioned enclosure the convection in the two result-
ing cavities is coupled, Fig. 1(b). Reports on this
geometry are scarce and are only in general qualitative
agreement, with disagreement in the actual numerical
values which calls for further clarification. Anderson
and Bejan [15] reported that N equidistant thin alu-
minium partitions in a water-filled enclosure having
AR =1/3 at Ra = 10°~10"" reduced the overall heat
transfer rate by a factor (N+1)~%¢' (i.e. by a factor
0.65 for N = 1). Nishimura ef al. [16] performed both
an experimental and a numerical investigation. In
their experiments the partitions were made of thin
copper plates, the working fluid was water, the enclos-
ure aspect ratio was 4 and 10 and the Rayleigh number
ranged from 10° to 10°; they found a heat trans-
fer reduction factor of 0.42 for a single partition.
From their numerical simulations (4R =4, Pr = 6,
10* < Ra < 107) the authors reported a reduction by
a factor (N+1)™' (i.e. a factor 0.5 for N = 1).

2. MATHEMATICAL FORMULATION AND
NUMERICAL METHODS

Figure 1 is a schematic of the basic, or non-par-
titioned, enclosure (identified with the subscript ‘D)
and of the partitioned enclosure (identified with the
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AR aspect ratio of the enclosure, H/W

b thickness of the partition

g acceleration due to gravity

H height of the enclosure

k thermal conductivity of the fluid

k, thermal conductivity of the partition

{along )
N, N, number of grid points along x and y
Nu, local Nusselt number, g W/{(#, — 1. )k]
Nu  average Nusselt number,

(1/H) 75,2 Nu, dy

i pressure
P dimensionless pressure, pW ¥/ (pva)
Pr Prandtl number, v/«

q local heat flux

r dimensionless longitudinal thermal

resistance of partition, see equation (8)
Ra  Rayleigh number, gB(t, — t.) W73/ (var)

! temperature

T dimensionless temperature,
(t—1)/(f— 1)

th temperature of the hot wall

t temperature of the cold wall

u velocity along x (perpendicular to
isothermal walls)

v velocity along y (paraliel to isothermal
walls)

U,V dimensionless velocities, U = uW/x and
V=uvW/a

NOMENCLATURE

x,»  coordinates perpendicular and parallel to
isothermal walls

X, Y dimensionless coordinates, X = x/W and
Y=y W

W width of the enclosure.

Greek symbols
& thermal diffusivity of the fluid
i thermal expansion coefficient of the fluid
Ax,Ay mesh sizes along x and y
v kinematic viscosity of the fluid
o density of the fluid.

Subscripts
ad indicates adiabatic conditions at the end
walls
b refers to the non-partitioned cavity
c refers to the cold wall
h refers to the hot wall
LTP indicates Linear Temperature Profile

conditions at the end walls
max maximum
mon monitoring point
P refers to the partitioned cavity.

Superscripts
calculated for r — 0 (‘ideal’ partition)
calculated for r — oc.

subscript ‘p’). The enclosure has height # and width
W. The dividing wall has a fixed thickness 5. Fol-
lowing the Boussinesq approximation and the
assumption of 2-D steady-state conditions the non-
dimensional governing equations conform to the fol-
lowing form:

(a)

Continuity
U &V
oxTay=?
1| au au oP U AU
. e e Ve = e T
Pr{_UﬁX+ EY] ax e Ty
e S - | »
4
A b
»
th te
Solid H
partition
=20,
(b)

FiG. 1. Schematic of the basic (a} and partitioned (b} enclosure.
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Momentum
1 ov oV oP &V oW
E[Ué}+Vﬁ]=~ﬁ+—a—j~2+W+RaT
3)
Energy
oT aTr  o*'T  &'T
VaxtVar=ax tov @

and are coupled with the conduction equation in the
solid partition. The non-dimensional variables X, Y,
U, V, Pand T are defined in the Nomenclature.

The flow boundary conditions are

U=V =0 onsolid boundaries. ®)

The thermal boundary conditions at the isothermal
walls are

T=1 at X=-1/2 (hotwall)
T=0 at X=1/2 {cold wall}.

(6a)
(6b)

The thermal boundary conditions at the end walls
can have a significant effect on local and mean heat
transfer rates across the enclosure, especially at low
aspect ratios 2, 12, 17]. Numerical investigations
usually include adiabatic and L TP (Linear Tempera-
ture Profile) conditions, defined, respectively, by

or
55=0 )
T=4-X 8)

with the former giving systematically higher heat
transfer rates. In a recent comparison with exper-
imental data [18] the present authors verified that heat
transfer rates obtained experimentally and expected
in real engineering systems (both for non-partitioned
and partially partitioned cavities) should lie between
these two boundary conditions and should be closer to
the LTP. In this study both conditions are considered.

In the present investigation Ra was varied between
3.5%10° and 3.5+ 107 for the basic enclosures, and
from 1.0 » 10° to 1.6 x 10° for the partitioned enclosures.
The aspect ratio 4R was varied between 0.1 and 16.
Equations (1)-(4) were solved using the computer
code Harwell-FLOW3D [19], which is based on a
finite-difference, colocated-grid method. The SIM-
PLEC algorithm for pressure-velocity coupling was
chosen [20].

In order to assess the effect of a partition on heat
transfer rates from numerical simulations, it is crucial
to obtain, for both the basic and the partitioned
enclosure, fully converged and grid-independent
results, based, as far as possible, on the same numeri-
cal methods. Thus, a preliminary analysis was con-
ducted on the convergence behaviour of the solution
with both the number of SIMPLEC iterations and the
number and distributions of grid points. Examples of
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the results are shown below ; they are all based on the
central differencing scheme for the advective terms.
Moderate underrelaxation factors (0.2-0.3) were used
for the velocities and the temperatures so that the
mass source residual (amount by which the continuity
equation is not satisfied by the current solution) exhi-
bited a smooth decreasing trend and eventually sta-
bilized itself around 10~ >-10~* times the overall mass
flow associated with the main circulation cell.

Figure 2 illustrates the convergence behaviour of
the solution with increasing iterations for a basic and
a partitioned enclosure having AR = 1, Ra = 10° and
LTP end walls. The vertical velocity v, at a moni-
toring location (around X = ¥ = —1/4) is reported
as a function of the number of iterations as computed
using two different grids having 30 =30 and 60 * 60
nodes in the fluid, respectively, and selectively refined
near solid walls. Convergence is slower for the finer
grids and for the basic enclosure: there are still slight
changes in the monitored quantity after 1500 iter-
ations.

Figures 3(a) and (b) illustrate the grid dependence
of the solution for basic and partitioned enclosures
having AR = 1 and 10, Ra = 16° and LTP end walls.
The maximum of the horizontal velocity, ., (a) and
the average Nusselt number (b) are reported against
the number N, of grid points along the vertical direc-
tion. The number of grid points in the horizontal
direction is kept equal to N, (AR=1) or N,/3
(AR = 10). The solution becomes grid independent at
N,z 40for AR =1 and at N, = 90 for AR = 10. The
average Nusselt number appears to be less sensitive
than the velocity peak and, more generally, than the
flow field.

On the basis of the above and similar results, the
following computational grids were chosen for the
final simulations for different values of the aspect
ratio.

AR 01 02 05 1 2 3 5 10 16

N, 9 80 70 60 50 56 40 50 30
N, 30 40 50 60 70 74 80 90 120

The grids were selectively refined near solid walls fol-
lowing a linear stretching law with Axu,/AXpex =
AYin/BYmex = 0.2. Additional control volumes were
used in the central partition if required.

The central differencing scheme (CDS) was used
whenever possible for the advective terms in order to
minimize numerical diffusion errors. For non-par-
titioned enclosures, up to Ra = 3.5%10° results
obtained by using CDS and hybrid-upwind diff-
erencing (HDS) differed negligibly both in Nu and in
the peak velocities. For AR > 2 and Ra > 10° the
CDS solution exhibited spurious oscillations and con-
vergence was achieved only by using very small under-
relaxation factors on U, V and T, while the difference
in Nu between CDS and HDS results increased to
about 1% (in the worst case, i.e. AR = 10, LTP end
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F1G. 2. Vertical velocity at a monitoring point as a function of the number of SIMPLEC iterations for
Ra = 10°%, AR = 1, LTP end walls, basic or partitioned enclosure and two different grids.

walls). All results presented here for the basic enclos-
ure are based on HDS at the highest Rayleigh num-
bers (107 and above) and on CDS otherwise. For
the parametrical comparison study on the partitioned
enclosure, HDS was mostly used. Computation times
ranged from about 10 to about 30 min on an IBM
3090-200J, depending on Rayleigh number, aspect
ratio, boundary conditions and partitioned/non-par-
titioned enclosure.

It should be observed that, for the basic enclosure,
at high aspect ratios multicellular flow was predicted
by using CDS, in agreement with experimental results
and published high accuracy predictive studies [21,
22], but not by using HDS. Nevertheless, the cor-
responding average Nusselt number varied very little
between the two cases, making the use of hybrid diff-
erencing quite acceptable for heat transfer predictions.
The reason for this lies in that the details of the flow
in the core region of the cavity have little influence on
the near wall region, where most of the temperature
variations occur. Incidentally, this is also the rationale
for the use of two-dimensional, steady-state, laminar
solutions even in cases where unsteadiness and three-
dimensionality are known to occur in real enclosures.

3. PRELIMINARY ANALYSIS

3.1. Results for the basic enclosure

In the basic enclosure the Nusselt number is
expected to be a function of the aspect ratio and the
Rayleigh number, i.c.

Nuy, = f(AR, Ra). )

At sufficiently high aspect ratio and Rayleigh number,
it can be expressed with reasonable accuracy in the
following way :

Nu, = CAR" Ra"” (10)

where C, n and m are constants which can be deter-
mined from the correlation of experimental or numeri-
cal results.

Figures 4(a) and (b) show the average Nusselt num-
ber vs the Rayleigh number for adiabatic and LTP
end walls and for AR = 0.2-10. An alternative way of
presenting the results is to plot the average Nusselt
number as a function of the aspect ratio for different
values of Ra. This is shown in Fig. 5 for adiabatic (a)
and LTP (b) end walls, respectively.

Comparison of numerical predictions with litera-
ture results, from both numerical and experimental
work, is very good (see ref. [13}). Correlation equa-
tions for the present results are

Nu = 0.155 Ra"*®

(adiabatic end walls)  (l1a)

AR =1 ve

Nu = 0.120 Ra"**’
(LTP end walls) (11b)

and
Nu = 0247 AR 020 Rg®-2¢
(adiabatic end walls) (12a)
AR =2-10

Nu=0.199 AR *'° Ra"?*

(LTP end walls). (12b)

The above correlations fit the results within + 5%
of the range Ra = 3.5* 10°-3.5% 10”. One immediate
observation from equations (12) is that

Nutygn/ Nt o = 1.24 AR -0 (13)

which shows that the difference between the two
values of Nu decreases with increasing 4R, see also
ref. [18], and is independent of Ra. If AR =1, Nu is
24% higher for adiabatic than for LTP end walls.

As is obvious from Figs. 4 and 5. no simple power-
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Fi1G. 3. Dependence of the results on the number of grid points along the vertical direction N,, for Ra = 1(°,
AR =1 or 10 and basic or partitioned enclosures, (a) peak of horizontal velocity, (b} average Nusselt
number.

law correlation is applicable to the results for very low
aspect ratios (4R < 1) or Rayleigh numbers. It is
convenient for the discussion that follows to represent
Nuin graphical form by drawing the constant-Nu lines
in the plane of the two independent parameters AR,
Ra (both in log scales). The result is shown in Fig. 6
for adiabatic (a) and LTP (b) end walls, respectively.
These graphs were drawn by interpolating predictive
results relative to several hundred test cases.

3.2. The expected effect of a partition on heat transfer

3.2.1. ‘Ideal’ partition. If an ideal, infinitely thin and
perfectly conducting partition, isothermal at 7= 1/2,
centrally divides the enclosure then

AR, =2x AR
Ra, = Ra/l16

(142)
(14b)

for each of the two separate cavities thus obtained.
Hence

Nu, = f(2* AR, Ra/16). (15)

This ‘ideal’ value, which is also the overall Nusselt
number for the partitioned enclosure, will be indicated
as Nuj, in the following. If equation (10) can be used
with constant n, m throughout the range AR-2 x AR,
Raf16-Ra then

Nup [ Nu, = 2707, (16)

In particular, it follows from equations (12) that under
these assumptions

Nuy/Nu, = 27 1?* = 0.423 (adiabatic end walls)
(17a)
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F1G. 4. Basic enclosure: average Nusselt number as a function of Ra for AR = 0.2-10 and adiabatic or
L.TP end walls.

Nuj/Nu, =2 """ = (0.444 (LTP end walls). (17b)

For very high aspect ratios, the dependence of Nu on
AR becomes negligible (i.e. #» — 0) and the reduction
factor caused by the partition on Nu approaches 0.5.

More generally, the charts of Fig. 6 can be used. In
order to find the effect of an ‘ideal’ partition on Nu
one simply has to draw a segment corresponding (on
log paper) to a 2-fold increase in 4R and to a 16-fold
decrease in Ra.

Point A in Fig. 6(b) is representative of the con-
ditions investigated by Nishimura er al. [16], i.e.
AR =5, Ra = 107. The Nusselt number is about 11
for the basic enclosure. The construction described

above leads to point A’ as representative of the cor-
responding ‘ideal’ partitioned enclosure; the associ-
ated Nusselt number is about 5, with a reduction
factor of 0.44 in good agreement with the exper-
imental result of ref. [16] (0.42). The same result can
be obtained by using equation (17b).

On the other hand, point B in the same graph cor-
responds to AR = 1/3, Ra = 3.5+ 107 and is roughly
representative of the experimental conditions inves-
tigated by Anderson and Bejan [15] (the authors per-
formed their measurements for Ra = 10°~10"!, which
unfortunately is outside the range investigated here;
however, the isopleths of Nu appear to be roughly
parallel in the region around point B so that results
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FiG. 5. Basic enclosure: average Nusselt number as a function of 4R for Ra = 3.5%10°-3.5% 107 and
adiabatic or LTP end walls.

can be extrapolated with little error). Proceeding as
before, one finds a reduction in Nu from ~ 16 (point
B) to ~9 (point B’), i.e. a reduction factor of about
0.56 in acceptable agreement with the experimental
result of 0.65.

It should be observed that both the above exper-
iments were performed in water (Pr = 5-6) while the
present simulations are for air (Pr = 0.72) ; however,
it is known that the Prandtl number has only a mar-
ginal influence on Nu [2]. LTP rather than adiabatic
conditions at the end walls were used, as they are
more appropriate to simulate the conditions of real
laboratory experiments. Of course, due to the differ-
ences in Ra, Pr, thermal boundary conditions, etc.
exact quantitative agreement with the results of refs.
[15, 16] cannot be expected ; nevertheless, the above
discussion shows that the main differences in exper-
imental results, concerning the effectiveness of par-

titions in reducing heat transfer rates in enclosures,
can be explained even on the basis of the ‘ideal’ par-
tition model. In particular, it should be observed that
the reduction factor in Nu caused by a central parti-
tion may be much larger than 0.5 (i.e. the effective-
ness of the partition may be very little) at very small
aspect ratios (left region of the graphs in Fig. 6).

A similar technique may be used to assess the effect
of multiple partitions; for example, two equidistant
‘ideal’ partitions cause a 3-fold increase in AR and a
reduction in Ra by (1/3)* = 1/81. This results in a
reduction factor of 3='!'7 = 0.276 for LTP boundary
conditions. This compares very well with the exper-
imental results of Nishimura ez al. [16] (Fig. 3).

3.2.2. Real partition. In the case of a real partition,
having a finite thickness b and conductivity k,, a
departure from the ‘ideal’ behaviour occurs due to
three distinct effects.
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the method for predicting the effect of an ‘ideal” partition is sketched.
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(1) Geometrical effect——the partition reduces the
width of each of the resulting separate cavities from
W2 to (W—5b)/2, thus modifying the geometry of
the problem. The ‘partial’ Rayleigh number of each
separate cavity decreases, while the ‘partial’ aspect
ratio increases, with respect to the ‘ideal’ case.

A simple, though cumbersome, analysis shows that,
provided equation (10) holds and b « W, the overall
Nusselt number changes by a factor Nu,/Nuj, = 14+
(1 —3m+n)b/ W with respect to the ‘ideal’ case. For
example, for LTP end walls and AR > 1 (‘partial’
aspect ratio > 2), equation (12b) is applicable
yielding Nu,/Nu, = 14+0.096/W. Thus, the varia-
tion of Nu, relative to Nuy, caused by the finite thick-
ness of the partition is positive and is less than 1%
provided &/ < 1/10.

Only for *partial’ aspect ratios less than 1 (i.e. for
AR < 0.5) the Nusselt number may increase markedly
with the ‘partial’ aspect ratio, i.e. n = 1, which results
in a relative variation of the overall Nusselt number
Nu, positive and of the same order of b/W.

(2) Thermal reststance effect—the partition adds
its conductive thermal resistance along x, b/k,, to the
convective resistance of the fluid layers along the same
direction, W/(k Nu), thus reducing the overall Nus-
selt number. A detailed analysis similar to that above
shows that, provided Nu,,(b/ W)(kjk,) « 1, the associ-
ated factor Nu,/Nu, is 1—(1+m)Nu,(b/W)(k/k,).
Thus, this effect is always negligible for thin partitions
(b « W) in air-filled enclosures (k, > k). The vari-
ation of Nu, is, of course, negative, i.e. opposite to
that of the geometry change.

{3) Thermal coupling effect—the finite con-
ductivity of the partition causes a complex tem-
perature profile to be established along it, thus mod-
ifying the thermal boundary conditions of the two
separate enclosures with respect to the ‘ideal’, iso-
thermal-wall case. This effect becomes more impor-
tant as the thickness of the central partitions decreases
and the other two effects become negligible, therefore
it is expected to be the most significant in air-filled
enclosures with relatively thin partitions. The extent of
the Nusselt number variation depends on the thermal
conductance of the partition along the vertical direc-
tion, i.e. on the product b+ k,, rather than on these
two parameters separately.

In order to single out the thermal coupling effect,
several test cases were run by assuming a small par-
tition thickness (b/ W = 1/40), resolving the partition
by four grid points, and setting its thermal conduc-
tivity along x to a very high (practically infinite) value.
This assured effects (1) and (2) to be negligible, thus
allowing the study of the major effect (3) without the
disturbing influence of the other two. The con-
ductivity k, along y, and thus the partition’s thermal
resistance 1/(bk,), were varied in a broad range
between practically infinitely conducting (isothermal
partition) and practically non-conducting {partition’s
vertical temperature profile completely imposed by
the fluid). The capability of the Harwell-FLOW3D
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code to deal with anisotropic conduction in solids [19]
was exploited to this purpose. Several aspect ratios
and Rayleigh numbers, and adiabatic/LTP end walls,
were tested. Results are summarized and discussed in
the next section.

4. RESULTS AND DISCUSSION

Figure 7 compares predicted vertical profiles of Nu,
along the hot and cold walls, and partition tem-
perature profiles, for the extreme cases &k, — co and
k,—0 and for adiabatic or LTP end walls, in
a partitioned cavity having AR =5 and Ra = 10’.
The corresponding average Nusselt numbers are also
reported. The results shown are easily interpreted on
the basis of the following considerations.

In an enclosure having a central partition, hot fluid
from the hot wall impinges on the upper half of the
partition while cold fluid from the cold wall impinges
on the bottom half. Thus, the partition tends to be
hotter at the top than at the bottom. When its longi-
tudinal thermal resistance is small enough, heat will
flow from the top to the bottom of the partition and
an almost isothermal temperature profile will be estab-
lished along it. On the other hand, when the longi-
tudinal thermal resistance of the partition is large,
compared with the effective thermal resistance of the
fluid layers, a non-uniform temperature profile will be
maintained along the partition. This results in
increased heat transfer rates, as the temperature
difference between hot wall and partition increases in
the bottom half of the cavity, where the local hot-wall
Nusselt number is large, and decreases in the top half,
where it is small (the opposite occurs between the
partition and cold wall). Also, the effect will be larger
for a cavity having adiabatic rather than LTP end
walls, as in the latter case the boundary conditions
force the (dimensionless) temperature of the partition
to be 1/2 both at the top and at the bottom ends, thus
greatly limiting the temperature excursion along it.

The function describing the increase in Nu,, as &,
decreases from infinity to zero, should possess a ‘uni-
versal’ nature, provided that the appropriate parameter
is used as the independent variable. By carefully
analysing the present results, it was concluded that
the most appropriate parameter is the ratio of the
thermal resistance per unit length of the partition
along y, 1/(bk,), to the equivalent thermal resistance
per unit length of the fluid layers along x in the basic

enclosure, 1/(Hk Nuy,)
_ Yk,)  Nu, AR

 (Hk Nuy) (ko)WY

(18)

Figure 8 shows the average Nusselt number in the
partitioned enclosure, normalized to its ‘ideal’ value
Nuy, (15), as a function of r for different combinations
of aspect ratios and Rayleigh numbers. Adiabatic end
walls are assumed; similar curves, but with lower
departures from the ‘ideal’ behaviour, are obtained
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partition temperature for adiabatic and LTP end walls (4R = 35, Ra = [0").

for LTP end walls. In all cases, Nu, is practically
coincident with Nu, for r < 107* and reaches a
maximum Nuj for 7> 107, It is evident that (N, —
Nup)(Nup — Nuy) is a fairly universal function of r
only. Its behaviour is {rather crudely) described by

(Nu, — Nu Y (Nujy— Nup) = 1/ (E+r"%%7) (19)

It should be observed that the value of » depends not
only on the relative thickness (b/ W) and conductivity
{k,/k) of the partition, but also on AR and Ny, (hence
on Ra).

For example, for a double-glazed window having
H=60 cm, W=6 cm, ,—1¢ =20°C, one has
AR =10, Ra=4%10" and, from equations (12),
Nu, = 4.2-4.5. A central glass partition 0.2 em thick
(k,fk =30, b/ W = 1/30) has an r-value of ~35. This
is far from the ‘ideal casc r — 0 (perfectly conducting,
or isothermal, partition), being rather closer to the
case r — 20, see Fig. 8. In fact, from equation (19) one
has

(Nuty — Nity) /(N — Nutl) = 0.96.

The maximum relative increase in Nu,. ANu =
{Nuj, — Nu )/ Nu, (corresponding to a parlition
having infinite thermal resistance along y, ie. to a
thin foil) is shown in Fig. 9 as a function of Ra
for AR = 5 and adiabatic or LTP end walls. In the
former case, ANu increases monotonically with Ra.
For LTP end walls, ANu has a flat maximum about
Ra = 10° and is always much lower (2-5 times) than
for adiabatic end walls.

The dependence of ANu on Ra and AR was inves-
tigated in more detail for the adiabatic case only.
Figure 10 shows ANu as a function of AR for
Ra = 1.6%10°-1.6*10%. At low Rayleigh numbers,
ANu increases monotonically with ARupto AR = 10;
at higher Ra, a maximum appears which is located
around AR = 2-3 and becomes more pronounced
with increasing Ra.

In the range investigated, ANu never exceeds ~ 12%
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FIG. 8. Average Nusselt number as a function of the parameter r for different aspect ratios and Rayleigh
numbers (adiabatic end walls). Values are normalized to those for r — 0.

(adiabatic end walls) or ~3% (LTP end walls). For
the double-glazed window example considerd above,
it follows from Fig. 10 that, even in the case of adia-
batic end walls, ANu = 3%. Thus, the ‘ideal’ value
Nuj,, obtained by using the charts in Fig. 6 or, when
possible, correlations (12) or similar, can be used as
a fair approximation for Nu, in practical engineering
calculations, especially those concerning air-filled
enclosures.

In the experiments of Nishimura er al. [16] the
ratio r is approximately 7.5 which for LTP boundary
conditions gives only a marginal (<1%) deviation
from the ideal case.

5. CONCLUSIONS

The effect of a central partition on heat transfer
rates in a rectangular vertical enclosure of height H
and width W, having opposite isothermal walls at
temperatures t,, ¢, was investigated numerically.

If the partition can be assumed to be ‘ideal’, i.e.
infinitely thin and isothermal at (£, +¢.)/2, the result-
ing reduction in heat transfer rates from Nu, to Nu,
can be simply computed from accurate results
Nu= f(AR, Ra) relative to vertical rectangular
enclosures ; such results, based on highly accurate and
grid-independent numerical simulations, were pre-
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Fi6. 9. Maximum relative increase in Nu, due to the finite thermal resistance of the central partition as a
function of Ra for AR = 5 and adiabatic or LTP end walls.
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F1G. 10. Maximum relative increase in N, due to the finite thermal resistance of the central partition as
a function of 4R for various Ra (adiabatic end walls only).

sented in graphical form for AR =0.1-16 and
Ra = 3.5%10°-3.5% 107, and in correlation form for
AR > 1 and the same range of Ra.

For a real partition, having finite thickness 4 and
conductivity &,, a departure from this ‘ideal’ behav-
iour occurs. If the cavity is air-filled and the partition
is relatively thin, the main reason for this departure is
the thermal coupling of the two separate enclosures
across the partition. This effect was isolated and
numerically investigated for a wide range of AR, Ra
and partition conductivities. A dimensionless par-
ameter r, expressing the ratio of the thermal resistance
of the partition along y to the effective resistance of
the fluid layers along x, was introduced and was found
to characterize well the amount of departure from the
‘ideal’ {perfectly isothermal partition) behaviour. For
any given AR and Ra, for r < 107" Nu, is close to its
‘ideal’ value Nuj, while for r > 10° it approaches a
maximum Nuy. The relative increase in N, was found
to depend on AR and Ra and, much more sensitively,
on the end wall boundary conditions, being far larger
for adiabatic than for LTP ongs. In the range inves-
tigated, it never exceeded the value of ~12% (adia-
batic) or ~3% (LTP). Thus, the use of the ‘ideal’
value of Nu, is quite acceptable in practical engin-
eering applications concerning air-filled enclosures.
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SUR LA CONVECTION NATURELLE DANS UNE CAVITE RECTANGULAIRE A UNE
OU DEUX ZONES

Résumé—Le transfert thermique convectif est étudié numériquement pour des cavités rectangulaires sans
partition ou divisées en deux zones par une cloison verticale et ayant des parois opposées isothermes a
différentes températures. Le rapport de forme varie de 0,1 & 16 et le nombre de Rayleigh de 3,5x 10° 4
3,5% 107 (sans partition) et de 1,0x10° 4 1,6 x 10® (avec partition). On fait varier Pépaisseur et la
conductivité de la cloison. Les conditions aux limites thermiques aux parois terminales sont adiabatiques
ou PTL (profil de température linéaire). Les équations de continuité, de momentum et d’énergie pour un
écoulement 2-D laminaire permanent sont résolues dans Papproximation de Boussinesq en utilisant une
méthode de différences finies et un algorithme de couplage pression—vitesse. Des résultats indépendants de
1a grille indiquent que la réduction du nombre de Nusselt causée par une cloison centrale mince peut étre
prédite & un faible pourcentage (dans le domaine étudié) en supposant la partition isotherme, c’est-a-
dire infiniment conductrice. La conductivité finie de la cloison cause une distribution longitudinale de
température avec un accroissement de Nu qui dépend du nombre de Rayleigh, du rapport de forme et des
conditions aux limites thermiques sur les parois terminales.

NATURLICHE KONVEKTION IN EINEM IN EINE ODER ZWEI ZONEN
UNTERTEILTEN HOHLRAUM

Zusammenfassung—Es wird der konvektive Wirmetibergang in einem rechteckigen Hohlraum numerisch
untersucht, der entweder durch eine vertikale Wand in zwei Zonen unterteilt ist oder auch nicht. Der
Hohlraum besitzt zwei gegeniiberliegende isotherme Winde unterschiedlicher Temperatur. Das Sei-
tenverhiltnis wird zwischen 0,1 und 16 variiert, die Rayleigh-Zah! von 3,5 x 10 bis 3,5 x 107 (im nicht-
unterteilten Hohlraum) bzw. von 1,0 x 107 bis 1,6 x 10” (im unterteilten Hohlraum). Die Dicke und Wir-
meleitfihigkeit der unterteilenden Wand wird ebenfalls variiert. Die Endwand ist entweder adiabat, oder
ihr wird ein lineares Temperaturprofil aufgepriigt. Die Gleichungen fiir Kontinuitit, Impulstransport und
Energie werden fiir eine zweidimensionale laminare stationdre Strémung geldst. und zwar unter den
Annahmen der Boussinesq-Approximation. Hierzu wird ein Finite-Differenzen-Verfahren und der
SIMPLEC-Algorithmus fiir die Kopplung von Druck und Geschwindigkeit verwendet. Die gitter-
unabhéingigen Ergebnisse zeigen, daB die Verringerung der Nusselt-Zahl durch eine diinne Unterteilung
in der Mitte innerhalb einiger weniger Prozent vorhergesagt werden kann (fir den uniersuchten Bereich),
wenn die Unterteilung als isotherm, d. h. unendlich gut leitend betrachtet wird. Fiir den Fall einer endlichen
Leitfdhigkeit ergibt sich eine Temperaturverteilung an der Trennwand, wodurch die Nusselt-Zah] zunimmt.
Diese hiingt von der Rayleigh-Zahl, vom Seitenverhdltnis und von der thermischen Randbedingung an der
Endwand ab.

ECTECTBEHHASA KOHBEKLIMSA B OJHO- Y ABYX30HHOHU MOJIOCTH
NPAMOYIOJIBHOI'O CEYEHUSI

AnmoTauus—YHCACHHO HCCIICROBANCA KOHBEKTHBHAIE TEIUIONEPEHOC B NPAMOYTONBHBIX TOJIOCTSX KaK
HEPa3ACNCHHbIX, TAK H PA3JCSCHHBIX Ha JBE 30Hb BEPTHKANBLHOH NEPEropoaKol H HMEIOIMX PAFHYHEIC
TEMIIEPATYPSI NPOTHBONOIOKHEBIX HIOTEPMHYECKHX CTeHOK. OTHOLUGH e CTOPOH BapbUpoBanocs ot 0,1
no 16, a wacno Panes or 3,5 x 10° mo 3,5 x 107 (wis sepasnenewusix monocteit) m ot 1.0 x 10° o
1,6 x 10® (ana paspenesmpix monoctei). TOMUHHA K TEIIONPOBOIHOCTE NEPErOPORKH HAMEHIHCE,
TernoBbie rpandIHEIe YCIOBHS HA TOPLEBLIX CTeHKAX Obinm amuabarHvecKMME HANM COOTBETCTBOBAJH
JmHeAHOMY TemnepaTypHoMy fpodumo. C HCIONL3OBAHHEM KOHEMHO-Pa3HOCTHOTO METONA H ajro-
purma SIMPLEC, cBS3nIBasOlIero QBajieHHES CO CKOPOCTBIO, PEIAIHCEH YPaBHEHHS HEPAIPLIBHOCTH, &
TaKKE COXPAHCHHH KONMYCCTBA ABIKEHHSA M 3HEPIHH JUIA ABYMEDHOIO JAMHHAPHOTO CTANHOHAPHOIO
TedeHEs B npubokenun Byccmiecka. PesynbTarTsl, He 3aBHCALLME OT BHGOPA CETKH, NOKA3MBAIOT, ITO
ymenbitienre wucia HyccensTa, BRI3BRHHOE TOHKOH LEHTPabHOR Neperoposkoi, MOXeT GhiTh onpene-
JIeHO C TOMHOCTHIO 0 HECKONBKHX NPOMEHTOB (B HCCHEAYEMOM OHANa3OHe) B NPEANONOKEHAY H3OTED-
MHYHOCTH TNEPEropoiskn, T.e. ¢¢ GeckoHeqHOH TemnonpoBogHocTH. KoHeYHas TEIONpOBOAHOCTH
TIEPEropO/IKK 06YCIOBIMBACT PAacTIpEnieyieHAE TEMIICPATYD IO e JUIHHE, TPHBOAAMICE X YBEIHICHHIO 3Ha-
ueHns Nu, KOTOpOe 3aBHCHT OT 1ncia Pasies, OTHOIICHMA CTOPOH M TEILTOBBIX TPAHHYHMIX YC/IOBHH Ha
TODHUEBbIX CTEHKAX.



